skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gordon, Melissa B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many recent efforts towards sustainable polymer development use building blocks from renewable biomass feedstocks. However, issues arising from the processes used to extract starting materials from biomass are often overlooked despite the safety and environmental hazards associated with energy-intensive separation processes and solvent utilization. Here, we describe a holistic approach towards using green solvents and processes to synthesize polyester thermosets from birch bark, a waste product from the paper and pulp industry. Betulin, a diol with a pentacyclic ring structure, was extracted from the bark of silver birch trees via reflux boiling using green solvents available from biobased sources. Ethanol and 1:1 ethanol:ethyl acetate mixtures were effective solvents for extraction with additional selectivity achieved via antisolvent precipitation. Betulin-rich extracts containing 62.2-81.5 wt% betulin were produced and directly used to prepare polyester thermosets using one-pot, solventless polycondensations with 100% of the starting materials available from biomass feedstocks. The polymers prepared directly from extracts had comparable properties to those synthesized from pure betulin, suggesting that additional processing steps required to achieve higher purity betulin may not be warranted. Overall, we present an approach to polyester development from betulin-rich birch bark extracts which incorporate green chemistry and engineering principles from feedstock to product. 
    more » « less
    Free, publicly-accessible full text available August 12, 2026